LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SIXTH SEMESTER - NOVEMBER 2023
UST 6502 - OPERATIONS RESEARCH

Date: 30-10-2023
Time: 01:00 PM - 04:00 PM
\square Max. : 100 Marks

Section A

Answer ALL the questions

$10 \times 2=20$ marks
1.Define operations research.
2. When are slack and surplus variables introduced in LPP?
3.Define degenerate solution to the system of linear equations.
4.Find the dual of the following primal problem:

Maximize $\mathrm{z}=6 \mathrm{x}_{1}+4 \mathrm{x}_{2}$
Subject to the constraints:
$7 \mathrm{x}_{1}+8 \mathrm{x}_{2} \leq 17$
$4 x_{1}+9 x_{2} \leq 12$
$\mathrm{x}_{1} \geq 0$ and $\mathrm{x}_{2} \geq 0$
5.Define basic feasible solution for a transportation problem.
6. Why is an assignment problem viewed as a particular case of transportation problem?
7. Write a note on network scheduling.
8.Explain CPM and PERT.
9.When does a saddle point exist for a game?
10.How to solve a game without saddle point?

Section B

Answer any FIVE questions
$5 \times 8=40$ marks
11.Obtain all the basic feasible solutions to the following system of linear equations:

$$
\begin{aligned}
\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} & =4 \\
2 \mathrm{x}_{1}+\mathrm{x}_{2}+5 \mathrm{x}_{3} & =5
\end{aligned}
$$

12. Use the graphical method to solve the following L.P.P.:

Minimize $\mathrm{z}=-\mathrm{x}_{1}+2 \mathrm{x}_{2}$
subject to the constraints:
$-\mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 10, \quad \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6, \quad \mathrm{x}_{1}-\mathrm{x}_{2} \leq 2$
$\mathrm{x}_{1} \geq 0$ and $\mathrm{x}_{2} \geq 0$.
13. Write the procedure for Big M method to solve an LPP.
14. Explain Hungarian method to solve an assignment problem.
15. Four operators $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ and O_{4} are available to a manager who has to get four jobs $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ and J_{4} done by assigning one job to each operator. The times needed by different operators for different jobs are given in the following table:

To From	J_{1}	J2	J3	J4
O_{1}	12	10	10	8
O_{2}	14	12	15	11
O 3	6	10	16	4
O_{4}	8	10	9	7

How should the manager assign the jobs so that the total time needed for all jobs is minimum?
16. The following are the details of estimated times of a certain project.

Activity	Immediate predecessors	Normal time (days)
A	-	16
B	-	20
C	A	8
D	A	10
E	B, C	6
F	D, E	12

Draw the network(arrow) diagram and find the critical path. Also find the expected time of the project.
17. Explain the following methods used to find the initial solution to a transportation problem:
(i) North-west corner rule
(ii) Least-cost method and (iii) Vogel's
approximation method. $\quad(2+2+4)$
18. Explain the procedure for solving (2 x n) and ($\mathrm{m} \times 2$) games graphically. (4+4)

Section C

Answer any TWO questions $2 \times 20=40$ marks
19. Use Penalty (Big M) method to

Maximize $\mathrm{z}=3 \mathrm{x}_{1}-\mathrm{x}_{2}$
subject to the constraints:
$2 \mathrm{x}_{1}+\mathrm{x}_{2} \geq 2$
$\mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 3$
$\mathrm{x}_{2} \leq 4$
$\mathrm{x}_{1}, \mathrm{x}_{2}$ are non-negative.
20. Find the optimum solution to the following transportation problem:

Wactory	I	II	III	IV	Capacity
A	42	48	38	37	160
B	40	49	52	51	150
C	39	38	40	43	190
Demand	80	90	110	160	

21. The following optimistic (O) , pessimistic (P) and most likely (M) time estimates(days) for each task have been given for a project:

Task	Predecessors	O	M	P
A	-	10	12	15
B	-	6	10	16
C	A,B	3	5	10
D	C	8	12	17
E	C	4	7	12
F	C	3	4	6
G	D,E	5	8	13
H	F,G	5	7	10

Construct the network diagram for this project and find the critical path. Also find the expected duration of the project.
22. Solve the following problem graphically:
$\left.\begin{array}{cc} & \\ & \\ & \\ & \mathrm{A}_{1} \\ \text { Player A } \\ & \\ & \mathrm{A}_{2}\end{array} \begin{array}{ccc}\mathrm{B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3} \\ 3 & -3 & 4 \\ -1 & 1 & -3\end{array}\right)$
$\& \& \& \& \& \& \& \& \& \&$

